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2 2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION)

Section I

10 marks
Attempt Question [I] to
Allow approximately 10 minutes for this section

Mark your answers on the answer grid provided (labelled as page [13]).

Questions Marks
1
1.  Which relationship between m and n will result in the graph of y = ————— 1
Té+mr—n
having no vertical asymptotes?
(A) m? < 4n (C) m? = —4n
(B) m? > 4n (D) m? < —4n
2.  Which of the following graphs is the graph of y = |z| + |z — 1|? 1
Y Y
(A) © 2
1
1 x 1 x
1 1
Y Y
(B) D) 2
1
} x 1 x
-1 —1
3. The equation z* + px + ¢ = 0, where p # 0. ¢ # 0, has roots a, 3, v and 4. 1

What is the value of a* + g4 + 4% 4§47

(A) —4q (B) p*—2q (C) p*—2q (D) p*—2q
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2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION) 3

4. A stone of mass m is dropped from rest and falls in a medium where the resistance 1
is directly proportional to the square of the velocity v. Suppose mk is the constant
of proportionality and the displacement downwards from the initial position is x
at time ¢. The acceleration due to gravity is g.

Which of the following is true?
(A) The terminal velocity is %

(B) Ast— oo, x — L where L is a positive constant.

d
(C) The equation of motion is given by vd—v =g — kv
x

v
(D) The time for the stone to reach velocity V is given by / (g — k:vz) dv.
0

5. The diagram shows the graph of 22 +y? = 1 for —1 < z < 0. The region bounded 1
by the graph and the y axis is rotated about the line x = 1 to form a solid.
Y
|
1 |
!
!
S
x
-1 1

Which integral represents the volume of the solid?

(A) 27r/01(1+x)\/1—x2 dx (©) 47r/01(1—|—x)\/1—x2 dzx

0 0
(B) 2#/_1(1—56)\/1—302 dx (D) 477/_1(1—30)\/1—562 dx

6. What is the maximum y value reached by the ellipse with the equation 1
3z +3)* | (y—4)°
=3
5 * 6
(A) —4+3V2 (B) 4+/5 (C) 3v2 (D) 4+3v2

NORMANHURST BOYS’ HIGH SCHOOL MONDAY AUGUST 12, 2019



2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION)

7.  Which of the following is an expression for the eccentricity of the ellipse 1
2 y?
— =1
k + k—1
where k£ > 17
NG 2k —1
(A) —— (©) ?

1 V2kZ =2k + 1
(B) vk (D) B

Let z = a + ib where a # 0 and b # 0. 1

Which of the following statements is false?

(A) z—z=2ib ©C) |z|+ 2 =|2+7Z
(B) |o” = || [2] (D) Arg(z) + Arg(z) =0
Which of the following is the minimum value of Arg(z) if 1
z—V2—iV2[=1
om i m om
= B) —— — -
(4) —75 B) —15 ©) 35 (D)

MONDAY AUGUST 12, 2019 NORMANHURST BOYS’ HIGH SCHOOL



2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION)

10. The equation of the tangent to the rectangular hyperbola zy = c? at P (ct, %) is 1
given by x +t%y = 2ct. The tangent cuts the = and y axes at A and B respectively.

Which of the following statements is false?

(A) P is the centre of the circle that passes through A and B.

(B) The area of AAOB is 2¢? square units.

4 2
(C) The distance AB is {/4c2t? + t%

(D) AP > BP

Examination continues overleaf. ..
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6 2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION)

Section 11

90 marks
Attempt Questions [11] to
Allow approximately 2 hours and 50 minutes for this section.

Write your answers in the writing booklets supplied. Additional writing booklets are available.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Commence a NEW booklet. Marks
(a) For z = 3i and w = 1 + 4, find the values of:
i |z —wl 1
ii. i, with a real denominator. 1
w
3 1
(b) i. Show that g + 52 is a root of the equation 23 = 1. 2
ii. On an Argand diagram, neatly plot all three roots of i. 2
(c) i. Find the points of intersection on the curves given by 3
2~ il =1 and Re() = ——=Im(2)
z—1]=1and Re(z) = ——=1Im(z
V3
ii. Sketch above the two curves on the Argand diagram to show the points of 1
intersection.
(d) i. Let OABC be a square on an Argand diagram where O is the origin. The 2

points A and C represent the complex numbers z and iz respectively.

Find the complex number represented by B.

ii. The square is now rotated about O through 45° in an anticlockwise 3
direction to OA'B'C".

Find the complex numbers presented by the points A’, B’ and C’ in the
form z(a + ib) where a € R and b € R.

MONDAY AUGUST 12, 2019 NORMANHURST BOYS’ HIGH SCHOOL



2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION) 7
Question 12 (15 Marks) Commence a NEW booklet. Marks
(a) Solve sin~!(4x + 1) = cos ' z. 2
(b) i. Find the values of A, B, C and D such that 2
23+ 222 + 4o + 2 _ Ar+B . Cx+ D
(22 41) (22 +4) 2241 x?+4
ii. Hence evaluate 2
/2x3+2x2+4m+2 d
T
o (z2+1)(2*+4)
(c) Find all the roots of the equation 3
182° 4+ 32% — 282 + 12 = 0
given two of its roots are equal.
(d) Given the roots of the equation x> + ax? 4 bx + ¢ = 0 form a geometric sequence, 3
b 3
show that (—) =c.
a
(e) A curve has equation ye=?* = 2x + 3.
d
i. Find 2 in terms of z and 1. 2
dx
ii. Find the equation of the normal to the curve at P(0,1). 1

Examination continues overleatf...

NORMANHURST BOYS’ HIGH SCHOOL
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8 2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION)

Question 13 (15 Marks) Commence a NEW booklet. Marks

(a) The graph of y = f(z) is shown. On one-third page diagrams, sketch the
following graphs, clearly indicating any asymptotes, intercepts with the axes
and other important features.

Yy
21 |
e
| o 1 ! X
i U
el
Loy=|[f(z) 1
i y= V@ 2
ii. y=f"(x) 2

2
b The region enclosed by the ellipse (z — 2)% + Y _ 1 is rotated one complete
4

revolution about the y axis.

Yy

y?

2 + (r—2)2+>==1
4
5. <3
] x
1 9 3
_2 1
i.  Use the method of cylindrical shells to show that the volume V of the solid 2

of revolution is given by

3
V:87T/ zy/1— (z—2)?dx
1

ii. Hence find the volume of the solid of revolution in simplest exact form. 4

Question [13] continued overleaf...
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2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION) 9
Question [13 continued from previous page...
(c) The diagram shows an oblique cone of base radius R and perpendicular height
h.
h
1T
Y
A horizontal cross section of the cone is taken at height y. This cross section is
a circle of radius r as shaded in the diagram.
i. By considering the ratio of sides in two pairs of similar triangles, show that 1
h—y
= R
= ()
ii. Show that the volume of the oblique cone is given by 3
1
—mR’h
37
Question 14 (15 Marks) Commence a NEW booklet. Marks
(a) Find the following:
T _ ,—x
N L 2
e+ )
. / dx
ii. —_— 2
Vb6x — 22
iii. / In (2% +1) da. 3
(b) By using the substitution = 2 + sin?§ for 0 < § < 3, evaluate 4
/z dz
s VB-0)@-2)
a a
(c) i. Use the result / f(z)de = / f(a —z) dz to show that 2
0 0
T I 2
/ In(1+tanz) dx :/ In{— ) dx
0 0 1 + tan x
1 2
ii. Hence evaluate / In{———] dzx 2
0 1+tanx

NORMANHURST BOYS’ HIGH SCHOOL
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10 2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION)

Question 15 (15 Marks) Commence a NEW booklet. Marks
22 2

(a) P(acos®,bsinf) is a point in the first quadrant on the ellipse — + 2= 1 and
a

2 2
Q(asec,btan ) is a point on the hyperbola $—2 - ‘7;—2 =1, where 0 < b < a.
a
i. Sketch the ellipse, hyperbola and their common auxiliary circle 22 +y? = a? 2

on the same diagram, showing the angle 6 and related points P and Q.
Show clearly how the positions of P and () are determined by the value of

b
0,0<0<—.
2

ii. Given the tangent to the ellipse at P is 2

xcost ~ysinh
a b

1 (Do NOT prove this)

Deduce that this tangent cuts the x axis vertically below Q.
iii. Given the tangent to the hyperbola at @) has the equation 4

rsecl ytan®
a b

1 (Do NOT prove this)

show that this tangent, and the tangent to the ellipse at P intersect at
T (a, btan g) Show both tangents on the sketch.

iv. Without any further working, sketch a second diagram showing both 2
curves, the common auxiliary circle, the points P and (), and the
corresponding tangents intersecting at T'if § < 6 < .

1
. 1
(b) Given In = A m de,', n e Z+
i.  Show that 3
I _ 2n— 1[ 1
T o0 "—|—71><2”+1
1 1
ii. Hence evaluate / FEE—— dz. 2
o (14 z?)

Examination continues overleaf...
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2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION) 11

Question 16 (15 Marks) Commence a NEW booklet. Marks

(a) Two particles move in the same vertical line in a medium with resistance that
varies directly with velocity. Particle A is projected vertically upwards from the
ground with an initial velocity of u metres per second. At the same instant,
Particle B is released from a height h metres above the ground.
i. For Particle A, show that the expression for its height x metres after a time 4
of ¢ seconds is given by

where g is acceleration due to gravity, and k is a constant.

ii. Assuming that the height at time ¢ of Particle B is given by 3
t —kt
- 9
k k2 k2

Prove that the particles are at the same height above the ground at time

T, where
1 U
T=-1
k n<u—kh>

(b) i. Use mathematical induction to show that if f(z) = €2, then the n-th 3
derivative of f(x) is

f(n) ((L‘) — 9ng2e
for all positive integers n.

ii. A power series of a function can be expressed as 2

1‘2 .%'3
fl@) = F(0) +f'(0) + 5 1(0) + 51 FD(0) + -

where 2! =2 x 1, 31 =3 x 2 x 1 etc.

Show that ) 5
4x 8x
21‘_ —_— —_— “ e
e =142z + o1 + 3 +
3 9 5
iii. Giventanx:x—i—x——i—i—i—---,ﬁnd 3
3 15
1420+ 222 — e
lim
x—0 tanx — x

End of paper.

NORMANHURST BOYS’ HIGH SCHOOL MONDAY AUGUST 12, 2019



14 2019 MATHEMATICS EXTENSION 2 ASSESSMENT TaAsk 4 STUDENT SELF REFLECTION

2019 Mathematics Extension 2 Assessment Task 4 STUDENT
SELF REFLECTION

1. In hindsight, did I do the best I can? Why e QQ14, 15(b) - Integration
or why not?

2. Which topics did I need more help with,
and what parts specifically?

e Q11 - Complex Numbers — creeeeeeeeeeeeeiiiiiiiiiii

e Q16 - Mechanics, Induction (3 Unit),
Harder 3 Unit.

.................................... 3. What other parts from the feedback
session can 1 take away to refine my
.................................... solutions for future reference?

e Q12 -  Polynomials, implicit
differentiation

e Q13 - Graphs & Curve Sketching,
Volume (Cylindrical ShellS & Simﬂal‘ .........................................
cross sections)

LAST UPDATED SEPTEMBER 2, 2019 NORMANHURST BOYS’ HIGH SCHOOL



2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION) SOLUTIONS

15

Sample Band E4 Responses (c) i (3 marks)
v' [1] for both equations.
Section I v [1] for each pair of correct x and y
lues.
1. (D) 2. (A) 3. (A) 4. (C) 5. (D) T
6. (D) 7. (B) 8. (C) 9. (C) 10. (D) * le—il=
|z +iy—i| =1
Section II ]w —1—2( )| =
Question 11 (Bhamra) +(y—1)>%=
(a) i. (1 mark) e Re(z) = —%Im(z):
|z —w| = [(3i) = (1 +17)| re
=1+ 2i] V3
_JEiE =3z
— V5 e Solving simultaneously,
2
ii. (1 mark) 2y (—\/556 - 1) =1
z 31 2
i (=7 2+ (VBr+1) =1
:3—;32 x2+<3m2+2m\/§+1>:1
422 +22V3 =0
(b) i. (2 marks) 2 <2x + \/§> -0
3 1, .
g—i—gz:cos——i—zsm% ,',x:()or—g
3
3 1 3
(% + 51) = (cos — 4+ isin %) As y = —/3z, the corresponding
y values are:
T .. T
_cos§+zsm§ :00r§
= Y 2
Hence @ + %2 is a root of the i, (1 mark) I
equation 2z® = 4, by using De m
Moivre’s Theorem.
ii. (2 marks) (_ﬁ §)
Im 22
1 17
5 ///————\\\\
cos—+zsm g// _cosg Fising
/ N | R
/ 6 e
w 2 \ Re _‘1
\ 3 I
\ /
\ /
AN /
ey T y=—Vr
-1

NORMANHURST BOYS’ HIGH SCHOOL
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16 2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION) SOLUTIONS

(d) i. (2 marks) e B— B
I 1 1
- B(w) B (1+i) <— n —2‘>
2 2
C(iz) <1 LT 1>
= Z E— —1 _— ) — —
iz V2 oVv2 V2 V2
2
= —iz
V2
Al?) = V2iz
Re Question 12 (Bhamra)
(a) (2 marks)

—
The vector OB, represented by the Y
complex number w is :

ii. (3 marks)

y=sin"(4z + 1) +-3

sosin~(4a+1) = cos™! o when 2 = 0 only

Re (b) i. (2 marks)

3+ 222 + 4z + 2 Axr+ B Cx+D
= + ——
(2 +1) (22 +4) 2?2 +1 2?2 +4
. Rota.tlo'n .by 7 equates to (219221 4) (224+1)(@244) X (@2+1)(22+4)
multiplication by
234222 + 40+ 2
T ..m 1 . E(Ax+B)(:c2+4)+(C’:c+D)(x2+1)
COS — + 1281l — = — + —=1 3 2
4 4 V2 V2 = Az’ + 4Ax + Bx® + 4B
Caz® 4+ Cx+ D2? + D
o A A _ 3 2
=(A+C)z°+(B+D)z*+ (4A+C)z+ (4B + D)
, 1 1. e Equating coefficients of 2 and «:
A Z ﬁ + EZ
{A +C=1 (1)
o O —(C 1A+C=4 (2)
2) —(1):
C': 22<i+i2> o
' V2 V2 34=3
1 1. A=1
=z R + —
< V2 V2 ) L C=0

LAST UPDATED SEPTEMBER 2, 2019 NORMANHURST BOYS’ HIGH SCHOOL



2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION) SOLUTIONS 17

e Equating coefficients of 22 and

x9:
B+D=2 (3)
4B+ D =2 (4)
(4) = (3):
3B=0
o (@)
D=
Hence
x3+2x2+4x—|—2_ T N 2
(22 4+1) (22 +4) 224+1 2244

ii. (2 marks)

/2x3+2x2+4x—|—2
o (@*+1) (22 +4)

-
o 0 IE2+1

ln :C + 1) +tan~! g}

dx

2
d
:c2+4> v
2

NN

0

In5 4+ tan™

1
2
1
~In
S5+

w1

(3 marks)

v [1] for finding the values of a.
v [1] for testing whether o = 2 is a root.
o

3
1] for the other root.

P(x) = 182° 4 32 — 28z + 12
P'(z) = 18 (32°) + 6z — 28
= 272% + 3z — 14

For a double root, P(a) = P'(a)) = 0:

270 +3a— 14 =0

(3a—2) (9a+7) =0
2 7
.= — or — —

3 9

Evaluate P (%) to see whether this is the
double root or not:

() () () n()

=0

Hence o = % is the double root. The full
factorisation is

1823 + 327 — 282 + 12 = (3z — 2)(3x — 2)(2x + 3)

\G][ov]

The final root is z = —

(3 marks)

v' 1] for writing Vieta’s formulae.
v' [1] for substantial progress to find a.
v

[1] for showing required result.

2 +ar? +br+c=0

Let the roots be a, % and ar, where r is

the common ratio.

e Product of roots:

e Sum of roots:

«
a+ar+—=—a
r

1
oc<1+7“+—) =—a
r

e Pairs of roots:
1

ar( )—i—a r+ o’ <—)

r

<1+7“+> b

Evaluating (§) + (1):

1)

(%)

(1):

NORMANHURST BOYS’ HIGH SCHOOL
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18 2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION) SOLUTIONS

(e) i. (2 marks)

d

d
= (ye™) = — (2r+¢7)

Using the product rule,

u=y v=e
dy
1 2J I _ -9 —2x
U Ir v e
d d
_2ye—2$ + e—QJj_y — 2 + 2y_y
dx dx

d
(6_2’” — 2y) & _9 + 2ye 2
dx
dy 2+ 2ye 2"
der e 2t — 2y

ii. (1 mark)
Atz=0and y=1:

dy_2+260_ 4
der  e0—2
1
Somg = —

Applying the
formula,

Question 13 (Bhamra)

() i (1 mark)y=|f(a)

point-gradient

ii.

iii.

(2 marks) y = v/ f(x)

Yy
2+~
AT
3t
1 4+ \
/ ‘ N
A \ \
| o ; } ! X
—“1 / 1 V3
Rt
L
|/
w7 9o L
(2 marks) y = f~1(x)
Yy
A
1+ ;o \
I
/ \
1 —0 ——
—2~=T 0 1 /3
VT
L)
\
Lo
(2 marks)
Yy

—9 1

Surface area of the cylinder
element:

SA =2nrh =2wzy

Change subject of the ellipse to
y, and take only positive root to

LAST UPDATED SEPTEMBER 2, 2019
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2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION) SOLUTIONS 19

ii.

obtain the top half:

2
(x—2)2+%:1

2
%:1—(95—2)2
y=2y1—(x—2)2

SSA=21 xx x2y/1—(x—2)?

e Sum of the areas produces the
volume, where dx is the thickness
of the area. Also, double the
volume to include the bottom
half of the ellipse:

=3
=2 1i A
Vi=2fim ) S4be

:2/347rx\/1—(x—2)2dx

1

:87r/3x\/1—(x—2)2dx
1

(4 marks)

v 1] for using the correct
substitution to obtain the new
limits.

v' [1] for the new volume expression
with revised integral in u.

Q\

[1] for correct integration.
v' [1] for final result.

3
V:87T/ xy/1— (z—2)?de
1

Let u=2—2:

z=1 u=1-2=-1
u=3-2=1
du = dx

u=1
V:87T/ (u+2)V1—u?du

=1

1 0
—sn [ wh=wa
=1

1
+87r/ 2v/1 —u? du
-1

r=3

ii.

The first integral has an odd
intergrand over a balanced period,
hence the outcome is zero. The
other integral being the area of a
semi circle of radius 1, from x = —1
to x = 1. Hence

1
V =38 (0+2>< 37 X 12>
= &2
(1 mark) Apply the similarity ratio

for AGDE || AGAB and also
AGEF || AGBC:

r_GE
R GB
GE _h—y
GB  h
Equating,
r_h-y
R h
h—y
= —= R
, ( - >><
(3 marks)

v' 1] for correct expression for 6V .
v [1] for substantial progress.

v [1] for showing the final result
required.

Let the thickness of each slice be dy.

oV = mridy

h—y ? 2
= — 1)
77( N >R Y

y=h

. h—y ? 2
T ()

NORMANHURST BOYS’ HIGH SCHOOL
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20 2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION) SOLUTIONS

Question 14 (Lam)

(a) i. (2 marks)

/ T b
(e +e)

Make the substitution © = e* 4+ e~ %:

% — % ¥
Sdu= (" —e ) du
T T d
/ ¢ c de: —Z: w2 du
(e +e)
=—ult4+0
1
= — +C
et +e %
ii. (2 marks)
d (b)
Vbxr — 22
B dx
V—(22 =6z +9)+9
B dx
9— (z—3)2

Alternatively, let z = 6sin?0 to
obtain 2sin~! (%) + C. This only

differs by a vertical shift compared
to the preferred solution.

iii. (3 marks)

v' [1] Uses integration by parts with
phantom term successfully.

v 1] For manipulation and
substantial ~ progress  towards
answer.

v [1] for correctly evaluating the

J v du expression.

/m (z* +1) da

Use integration by parts and insert
‘phantom’ term:

uzln(:c2+1) V=21
2
du:m d’l)zl

/1><ln(:c2+1) dx

:uv—/vdu

_ 9 _ 222
_:cln(:c —I—l) /x2+1dx

2 _
:xln(xZ—l—l)—Q/xa;_ij_lldx

::cln(:c2+1)—2/<1—$21+1> dz

::cln(:c2—|—1) —Q(x—tanflsc)ﬂ—C

(4 marks)

v’ [1] for using the substitution correctly
to change the x expression into the 6
expression in the integrand.

v [1] for using the substitution correctly
to change the z integration limits into 6
limits.

v [1] for correctly changing differential from
dz into df.

v [1] for final result required.

| e

Let x = 2 +sin? 6,

3—x:3—(2+sin2¢9)

z—2=(2+sin’0) —2
=1—sin?6

2y = sin? 6
= COS

LAST UPDATED SEPTEMBER 2, 2019
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2019 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 4 (TRIAL EXAMINATION) SOLUTIONS 21

Also, (c)
9 1
When x = T sin?0 = 1
. 1
sinf = 3
oo
6
5 1
When x = 5 sin?g = 3
1
sinf = —
V2
0
0=—
4
Differentiating,
d
d—z = 2sin 6 cos 6

. dx = (2sinfcosf) do

Make the substitution and perform
integration:

1 2sinécosd db

/m /G_W

:/2d6

us
6

(%——)

l\D

Cblll

i. (2 marks)

/4 In(1+tanz) dz
0

1 w
:/ ln<1—|—tan<——x>> dx
0 4
T tanz —tanz
In dzx
0

1+tan tan x
f 1—t
/41 ML g
0 1+ tanx
%
/ In
0

ii. (2 marks)

=

1+ tanx

1+
(1+tan:c
(

1 —l—tan:c)

/4 In(1+tanz) dx
0

1 2
~ [ (o) @
0 1+ tanx

jus

= /4 (In2 —In(1 + tanx)) dz
0

:/4 1112dac—/4 In(1 + tanx) dx
0 0

Rearranging,

2/4ln(1+tanx) dx:/4ln2dx
0 0

= {xan]Z
0
:Eln2
4

jus

1 T
/ In (1 + tanx) dx:§1n2
0

NORMANHURST BOYS’ HIGH SCHOOL
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Question 15(Lam)

(a)

i.

ii.

iii.

(2 marks)

T (a,btang) (part (iii))

(2 marks)

rcost ~ysinf
a b

At y =0,

= asecf

x pry
cos 0

As @ has x coordinates (asec,btan@), the tangent to the ellipse cuts directly
below Q.

(4 marks)
v" [1] each for showing the = and y coordinates of T'.

v' [1] for each correctly drawn tangent (both must intersect at = = a)

xcost ~ysinf

(1)

zsecl ytant

1 (2
- 5 (2)
Divide (1) by cos 6:
tan 6
2 Y 2n = secf ()

() + (2):
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Substitute z = a into (1):

cos 6 + ysin? =1
b
— 1—
Yy sinH( cos )

1—cos@
:b< sin ¢ )

As cosf = cos?2 (g) =1- 2sin2% and sin § = sin 2 (g),
1 — 25in? %)

6
2

2 sm CcoS

2sin?

2 sm Cos 2

iv. (2 marks)

T (CL./ btan g)

NORMANHURST BOYS’ HIGH SCHOOL LAST UPDATED SEPTEMBER 2, 2019
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(b) i. (3 marks)
V' [1] for successfully using integration by parts with the phantom term.

v' [1] for further substantial progress in removing integrals and replacing with I,, of a
lower order.

v’ [1] for final result.

1
Li=[——d
/(1+x2) v

Applying integration by parts with phantom term u being the current integrand
and dv = 1:

u=(1+x2)_n v=ux
du = —n (1+x2)_n_1 x2x dv=1

x ' ! 2 2\ —n—1
1
_ 2_”+2n/ (12 1) (1+22) " de
0

=2 +2n/01 ((1 +22) - (1 +x2)*"*1> da

1 1 1 1
_ 94 op / 7,16@_/ S
o (1+2?) o (1+ax2)"

n'g

=In =Int1
=2""+2nl, — 2nl,11
2nl, — I, =2nl, — 277
2nlpy1 = 2n—1I,+27"

P P S S
A . R Y
ii. (2 marks)
T
Il—[tan lx] :Z
2(1) — 1 1 2(2) -1 1
I, = I I3 = I +
2= Ton) T 2(2) 2x 28
iyl 3T 1), 1
_2(4)+4 4\8 4 16
_r 1 371
8 4 32 4
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25

Question 16(Lam)

(a) i. (4 marks)

v' [1] for correctly evaluating the original integral in terms of dv and dt.

v' [1] for obtaining ¢ in terms of v expression.

v' [1] for correctly evaluating the second integral
v' [1] for final result required.

As Particle A is projected upwards:

e Force due to gravity: —mg.

e Force due to air resistance: —mkwv.

F=mx=—-mg—mkv
S r=—g—kv
=g+ hv)

dv o a
g+ kv

Integrating,

1/ k dv /
— =— [ dt
kJ g+kv

1

Eln(g—l—kv) =—t+Ch

At t=0,v=u:

1
Cy = z In(g + ku)

1
In(g + ku) — Z In(g + kv)

(g—i—ku)
In
g+k:v

= =

(Use log law to switch the fraction’s numerator/denominator, and exponentiate:)

e_kt:g+kv

g+ ku

g+ kv = (g + ku)e *
(g™

dt k k
1 —kt
—E(g-i-k‘u)e gt
= —=4C
T 3 k+ 2
When t =0, x = 0:
g+ ku
Cy = 12
_g+ku _kt gt
o=t (-t - F
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ii. (3 marks) The particles meet when

+ku(1_ 7k‘t)_ _h___ge_kt g

K- (% wry

t—lln Y
ok u — hk

(b) i. (3 marks) Let P(n) be the proposition:
P(n): f(z) = €** then f™(z) = 27>
e DBase case: P(1)
flz) =e*
(@) = 262 = 212
Hence P(1) is true.
e Inductive hypothesis: assume P(k) is true for some k € Z*, i.e.
P(k) : f(z) = €*® then f®) () = 2Fe?
e Examine P(k + 1):
F(@) =2 x f/(@) = 22
FIw) =2 () = e
FE+D(2) = (f(k; ( )) ddx (2k62x)
_ 2k % 92T — ok+1,2¢
Hence P(k + 1) is also true and P(n) is true by induction.
ii. (2 marks)
o Let f(x) =e*.
o f(0)=e€"=1

Using results from above,
o f(0)=21e"=2
° f//(O) — 2260 — 22

o f(0) =230 =23
Hence
flx) =€
z? 2 ? 3
—1+2x+§><2 —1—3' X 2° 4+ -
422 823

—1+2$+—+?+
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iii. (3 marks)

v' 1] for correct cancellation of the relevant polynomial terms after substitution.
v' [1] for correct factorisation.
v

[1] for taking limit to obtain —4.

tanx — </+%3+2f55+ )—)3’
_ 83 _ 16zt
7% 24
R
4 2
:Zg(—ﬁ—?m_"')
1, 222
Asx — 0,
1+2x+2x2—62x:(—§_2§_"'):;%:—4
t _ 1 222 1
anr —x (54_%-1----) 3
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